Research team

The group is headed by Prof. Martin Maier, the founder and creative director of the Optical Zeitgeist Laboratory. Students and researchers interested in joining or visiting the research group are encouraged to contact Prof. Martin Maier for further information.



Scientific research

Current research activities focus on the projects listed below. For more technical details the interested reader is referred to our publications

6G and Onward to Next G
The Metaverse is the next paradigm shift after the mobile internet. The Metaverse will utilize head-mounted devices (HMDs) and extended reality (XR) as the medium to connect avatars and users in the real world. Furthermore, the Metaverse is supposed to provide gamified experiences around emerging Web 3.0 technologies and is anticipated to be the origin of the Multiverse.
read more

Web3 and Token Engineering in the Emerging Metaverse
The Internet has progressed from Web1, which was a read-only information economy, to the current Web2 and its read-write platform economy. Blockchain technology has been given rise to Web3, which enables a read-write-execute token economy that compensates contributors of data with tokens.
read more

Previous projects

Toward 6G: The Internet of No Things
Future 6G networks should not only explore more spectrum at high-frequency bands but, more importantly, converge upcoming technological trends such as multisensory extended reality (XR), connected social robots, human-machine interaction, and blockchain technologies. This project will explore the so-called Internet of No Things with its human-intended services that appear when needed and disappear when not needed. The Internet of No Things aims at helping realize the paradigm shift "from 5G engineering to 6G humanity," as envisioned in the world's first 6G White Paper.
read more

Ethereum: Decentralized Applications and Autonomous Organizations
The objective of this research project is to combine the capabilities of Ethereum blockchain and emerging Tactile Internet technologies to build a truly distributed P2P architecture that is capable of adopting a resilient, autonomous, and decentralized control for the Tactile Internet applications. Furthermore, this project will promote interaction between humans, machines, and smart contracts. The outcomes of this research project will lead to significant transformations across several industries and open new challenges and business opportunities that are set to revolutionize our digital world.
read more

Artificial Intelligence based Mobile-Edge Computing
Two-level cloud-cloudlet architectures leverage both centralized and distributed cloud resources and services, whereby the cloudlet infrastructure is typically based on data-centric FiWi access networking technologies. Cooperative automation is a key feature that is expected to enhance unified FiWi and Het-Net networks by means of artificial intelligence (AI) based mobile edge-computing (MEC) capabilities. This research project will address the key challenges towards enabling AI based MEC in FiWi enhanced 4G networks to meet key design requirements such as ultra-low latency. Moreover, TensorFlow, an open source machine-learning library, will be exploited to realize collaborative automation as an important stepping stone towards human-robot symbiosis.
read more

Extended Reality and O2O Communications
The recently emerging trend of extended reality (XR) aims at combining real and virtual world and human-machine interaction. XR is anticipated to be the next-generation mobile computing platform that creates a reality-virtuality continuum for the extension of human experiences. This research project investigates the potential and limitations of exploiting online-to-offline/offline-to-online (O2O) communications to further tie online and offline​ closer together for the creation of novel business models, given that 70% of millennials prefer shopping in conventional brick-and-mortar stores despite the fact that they spend an average of 7.5 hours a day online.​
read more

Tactile Internet
The Tactile Internet is expected to be an extremely robust and reliable system that supports consistent user experience and tactile applications/services in a connected world. To realize this vision, several technologies like Fiber-Wireless (FiWi) access networks, cloud based platforms, robotics etc. are expected to converge by the end of this decade. We will investigate key enabling techniques and architectures to improve the overall system performance. We expect that the outcomes of our project will significantly reduce the end-to-end delay for tactile applications and will inquire into new ways of complementing, rather than substituting, men with machines.
read more

Cloud Computing for Smart Grids and Smart Cities
There exists a plethora of readily available wired and wireless networking technologies to build smart grid communications infrastructures. The major roadblocks toward a sustainable low carbon society might be less technological feasibility and maturity but more the lack of compelling business cases and regulatory frameworks for emerging smart grids. Similar problems have been faced during the early appearance of cloud computing in the 1960s, while now cloud computing is widely deployed. This research project aims at unveiling the potential and limitations of cloud computing in smart grids and exploring the role of cloud computing assisted smart grids as enablers for smart cities.
read more

Advanced WBANs for an Ageing e-Health Society
As societies around the world will face populations with a significant increase of people aged over 65 years during 2010 and 2030, it will be key to find more cost-efficient healthcare solutions. This project aims at investigating advanced wireless body area networks (WBANs) and examining the involved challenges, including energy-efficient MAC protocol design, interoperability, as well as co-existence and integration with FiWi access sensor networks.
read more

Unveiling the Hidden Connections between E-mobility and Smart Microgrid
Electric mobility (e-mobility) and smart microgrid are two different game changing concepts for sustainable transportation and energy solutions. This research project aims at unveiling the hidden connections between local intermittent renewable energy sources and the stochastic characteristics of electric vehicle use patterns, thereby paving the way for a more holistic design of zero-emission smart zones by means of FiWi communications technologies.
read more

Smart Grid Communications over Über-FiWi Networks
This research project inquires into fiber-wireless access sensor networks, new communications paradigms, migration paths, and implementation models to integrate and efficiently control e-mobility, distributed renewable energy sources, and future smart microgrid technologies.
read more

Green Video-Dominated P-OTNs
This research explores next-generation P-OTN switch architectures with advanced packet switching capabilities and new forwarding models, paying particular attention to their control, evolutionary migration not only from legacy SONET/SDH TDM but also widely deployed wavelength division multiplexing (WDM) circuit-switched network infrastructures.
read more

Optical Coding (OC) enabled Carrier-Grade Ethernet Networks
The purpose of this research project is to reconcile a partly sceptical networking community with OC technologies and establish them as a viable next step to enhance carrier-grade Ethernet network architectures with novel OC enabled control plane and OAM processes.
read more

Fiber-Wireless (FiWi) Broadband Access Networks
This research project investigates the design and performance of future-proof FiWi broadband access network architectures, medium access control and path selection protocols, and scheduling algorithms required to ensure QoS continuity and end-to-end QoS support across heterogeneous optical and wireless platforms.
read more