

The Tactile Internet: Where Do We Go From Here?

Martin Maier

University of South Florida, Tampa, April 17, 2019

IEEE/OSA JOCN Special Issue on Latency in Edge Optical Networks

April 2019:

M. Maier and A. Ebrahimzadeh

[Cd] = [Cd2+] = 10nmgl L-

"Towards Immersive Tactile Internet Experiences: Low-Latency FiWi Enhanced Mobile Networks With Edge Intelligence [Invited]"

"A Robot in Every Home"

[Cd] = [Cd2+] = 10nmgl |

Bill Gates, 2007:

- Robotics industry is developing in much the same way as PC business did 30 years ago
- Vision: PC will get up off the desktop & allow us to see, hear, touch and manipulate objects remotely

"The Tactile Internet"

March 2014:

- G. P. Fettweis coins the term Tactile Internet:
 - "Enabling unprecedented mobile applications for tactile steering and control of real and virtual objects"

August 2014:

• ITU-T Technology Watch Report "The Tactile Internet"

"The Tactile Internet"

[Cd] = [Cd2+] = 10nmg| L

March 2016:

- IEEE P1918.1 standards working group approved by IEEE Standards Association
- Definition of Tactile Internet:
 - "A network, or a network of networks, for remotely accessing, perceiving, manipulating or controlling real and virtual objects or processes in perceived real-time."
- Key use cases
 - Teleoperation, haptic communications, and immersive virtual reality

FiWi Enhanced 4G LTE-A HetNets

[Cd] = [Cd2+] = 10nmgl L-1

WiFi Connection Time of MUs

 CCDF of WiFi connection time of MUs fits truncated Pareto distribution:

[Cd] = [Cd2+] = 10nmg| |

$$\frac{\alpha \gamma^{\alpha}}{1 - \left(\frac{\gamma}{\nu}\right)^{\alpha}} \cdot x^{-(\alpha+1)}, 0 < \gamma \le x \le \nu$$

 Verified by using comprehensive smartphone traces of PhoneLab data set

UNIVERSITÉ DE RECHERCHE

H. Beyranvand, M. Lévesque, M. Maier *et al.*, "Toward 5G: FiWi Enhanced LTE-A HetNets With Reliable Low-Latency Fiber Backhaul Sharing and WiFi Offloading," *IEEE/ACM Transactions on Networking*, vol. 25, no. 2, pp. 690-707, April 2017

URLLC in FiWi Enhanced 4G LTE-A HetNets

[Cd] = [Cd2+] = 10nmgl L

H. Beyranvand, M. Lévesque, M. Maier *et al.*, "Toward 5G: FiWi Enhanced LTE-A HetNets With Reliable Low-Latency Fiber Backhaul Sharing and WiFi Offloading," *IEEE/ACM Transactions on Networking*, vol. 25, no. 2, pp. 690-707, April 2017

INRS UNIVERSITÉ DE RECHERCHE

Teleoperation & Haptic Communications

[Cd] = [Cd2+] = 10nmgl L-

Edge Sample Forecast (ESF) via Al Enhanced MEC

UNIVERSITÉ DE RECHERCHE

RS

ESF: Multi-Layer Perceptron (MLP)

Algorithm 1 Edge Sample Forecast Input: $\mathcal{T}, \mathcal{S}, t_0, \Xi$ Output: θ^* 1: $\delta = 1/F_s$ 2: $\mathcal{T}^{\delta}, \mathcal{S}^{\delta} = \text{SAMPLE}_\text{ALIGNER}(\mathcal{T}, \mathcal{S}, \delta)$ 3: $\Delta \leftarrow \left\lceil \frac{t_0 - \mathcal{T}^{\delta}(L)}{\delta} \right\rceil$ 4: $\mathcal{A}_0 \leftarrow (s_1^{\delta}, ..., s_L^{\delta}) \in \mathbb{R}^L$ 5: for i = 1 to Δ do 6: $t_i^* \leftarrow t_L^{\delta} + i \times \delta$ 7: $\theta_i = \Psi(\mathcal{A}_{i-1}, \Xi)$ 8: $\mathcal{A}_i = (\mathcal{A}_{i-1}(2), \mathcal{A}_{i-1}(3), ..., \mathcal{A}_{i-1}(L), \theta_i)$ 9: end for 10: $\theta^* \leftarrow \frac{\theta_{\Delta} - \theta_{\Delta - 1}}{t_{\Delta}^* - t_{\Delta - 1}^*} (t_0 - t_{\Delta - 1}^*) + \theta_{\Delta - 1}$ 11: return θ^*

[Cd] = [Cd2+] = 10nmgl L-1

 Algorithm 2 SAMPLE_ALIGNER()

 Input: $\mathcal{T}, \mathcal{S}, \delta$

 Output: $\mathcal{T}^{\delta}, \mathcal{S}^{\delta}$

 1: $L \leftarrow \left[\frac{t_K - t_1}{\delta}\right]$

 2: for i = 1 to L do

 3: $t_i^{\delta} \leftarrow t_1 + (i - 1)\delta$

 4: end for

 5: $s_1^{\delta} \leftarrow s_1$

 6: for i = 2 to L do

 7: $s_i^{\delta} \leftarrow \frac{s_j - s_{j-1}}{t_j - t_{j-1}} (t_i^{\delta} - t_{j-1}) + s_{j-1}, \forall j : t_{j-1} < t_i^{\delta} < t_j$

 8: end for

 9: return $\mathcal{T}^{\delta}, \mathcal{S}^{\delta}$

Haptic Traffic: Packet Interarrival Times

 $[Cd] = [Cd^{2+}] = 10$ nmgl L⁻¹

Haptic Traffic: Packet Interarrival Times

[Cd] = [Cd2+] = 10nmgl L-

Haptic Trace Driven Simulations

[Cd] = [Cd2+] = 10nmgl L

Local teleoperation w/ and w/o deadband coding

NG-PON Backhaul

[Cd] = [Cd2+] = 10nmgl L

Non-local teleoperation across different NG-PON backhaul infrastructures

ESF: Forecasting Accuracy

[Cd] = [Cd2+] = 10nmgl L

Haptic traces used to train MLP based ESF to perceive remote task environment in real-time at 1-ms granularity

Intelligent Machines: Classification

[Cd] = [Cd2+] = 10nmg| L

Task Type	Human Support	Repetitive Task Automation	Context Awareness and Learning	Self-Aware Intelligence
Analyze numbers	Business intelligence, data visualization, hypothesis- driven analytics	Operational analytics, scoring, model management	Machine learning, neural nets	Not yet
Digest words, images	Character and speech recognition	Image recognition, machine vision	Watson, natural language processing	Not yet
Perform digital tasks (admin and decisions)	Business process management	Rules engines, robotic process automation	Not yet	Not yet
Perform physical tasks	Remote operation	Industrial robotics, collaborative robotics	Fully autonomous robots, vehicles	Not yet

Ability to act (vertical) vs. Ability to learn (horizontal)

T. H. Davenport and J. Kirby, "Only Humans Need Apply: Winners and Losers in the Age of Smart Machines," HarperBusiness, May 2016.

HABA/MABA

[Cd] = [Cd2+] = 10nmgl L-

"Human Engineering for an Effective Air Navigation and Traffic Control System," *National Academy of Sciences*, 1951.

- Traditional humansare-better-at/ machines-are-betterat (HABA/MABA) design approach
- Only divides up work between humans and machines

Human-Machine Collaboration

[Cd] = [Cd2+] = 10nmg| |

Weak human + Machine + Better process superior to Strong human + Machine + Inferior process

A <u>clever process</u> beats superior knowledge & superior technology

From AI to IA (Intelligence Amplification)

Human-Agent-Robot Teamwork (HART)

Basic Idea: "Keep Human in the Loop"

[Cd] = [Cd2+] = 10nmgl L

• Treating human as a "member" of a team of intelligent machines for a race with (rather than against) machines

Goals:

- Design of human-machine coordination processes
- Drive symbiotic human-robot development in search for synergies
- Enabling automation and/or augmentation of physical and cognitive human tasks

Physical Task Allocation Using Self-Awareness

Given:

- J_i : Task i, (i = 1, 2, ...).
- t_i^a : Arrival time of task demand *i*.
- w_i : Workload brought in by task *i*.
- l_i^{task} : Location of task *i*.
- S_{UO}^A : Set of available user-owned robots.
- S_{UO}^{B} : Set of busy user-owned robots.
- S_{NO}^A : Set of available network-owned robots.
- S_{NO}^{B} : Set of busy network-owned robots.
- S: Set of all user- and network-owned robots.
- N: Total number of robots.
- l_j^r : Location of robot j.
- t_j^{av} : Next available time of robot j.
- v_j : Speed of robot j.
- C_j : Task processing capacity of robot j.
- D: Maximum scheduling deadline.
- $d(l_j^r, l_i^{task})$: Euclidean distance between task i and robot j.

[Cd] = [Cd2+] = 10nmgl |

Decision variables:

• X_i^j : A binary variable equal to 1 if task *i* is assigned to robot *j*.

Objective:

$$\min \sum_{j=1}^{N} X_i^j \left(\underbrace{\max\left(t_j^{av} - t_i^a, 0\right)}_{\max\left(t_j^{av} - t_i^a, 0\right)} + \underbrace{\frac{d(l_j^r, l_i^{task})}{v_j}}_{v_j} + \underbrace{\frac{c_{\text{excution time}}}{w_i}}_{w_i} \right)$$

subject to

$$\begin{split} \sum_{\substack{j \in S^A_{UO} \cup S^B_{UO}}} \left(t^{av}_j - t^a_i \right) X^j_i < D, \\ \sum_{j=1}^N X^j_i = 1, \\ X^j_i \in \{0,1\}. \end{split}$$

Algorithm 1 Self-Aware Multi-Robot Task Coordination Input: $J_i, w_i, t_i^a, S_{UO}^A, S_{UO}^B, S_{NO}^A, S_{NO}^B, S, l_i^r, t_i^{av}, C_j, v_j, D$ **Output:** $X_i^j, t_i^{av}, l_i^r, \forall j = 1, 2, ..., N$ 1: if $S_{UO}^A \neq \emptyset$ then $j^* \leftarrow \operatorname{argmin} d\left(l_i^r, l_i^{task}\right)$ 2: $j \in S_{UO}^A$ 3: else if $S_{UO}^B \neq \emptyset$ then 4: $W_{min} \leftarrow \min_{j \in S_{HO}^B} (t_j^{av} - t_i^a)$ 5: if $W_{min} < D$ then 6: $j^* \leftarrow \operatorname{argmin}(t_i^{av} - t_i^a)$ 7: $j \in S_{UO}^B$ 8: else if $S_{NO}^A \neq \emptyset$ then 9: $j^* \leftarrow \operatorname{argmin} d\left(l_i^r, l_i^{task}\right)$ 10: $j \in S_{NO}^A$ 11: else $j^* \leftarrow \operatorname{argmin}(t_i^{av} - t_i^a)$ 12: $i \in S$ end if 13: 14: end if end if 15: 16: end if 17: $X_i^{j^*} \leftarrow 1$ 18: $t_{j^*}^{av} \leftarrow t_{j^*}^{av} + \max\left(t_{j^*}^{av} - t_i^a, 0\right) + \frac{d(l_{j^*}^r, l_i^{task})}{v_{i^*}} + \frac{C_{j^*}}{w_i}$ 19: return $X_{i}^{j}, t_{i}^{av}, l_{i}^{r}, \forall j = 1, 2, ..., N$

HART-centric task coordination based on shared use of user- and networkedowned robots

Spreading Ownership

[Cd] = [Cd2+] = 10nmgl

Minimizing completion time of physical tasks by spreading ownership of robots across MUs

Decentralization

[Cd] = [Cd2+] = 10nmg| L

Decentralized blockchain technologies used to realize blockchain IoT (B-IoT)

Ethereum: DAOs vs. AI & Robots

[Cd] = [Cd2+] = 10nmgl L-

Decentralized Autonomous Organizations (DAOs)

- Salient feature of Ethereum
- Open-source, distributed software that executes smart contracts
- Unlike autonomous AI based agents, DAOs by design heavily rely on involvement from humans at the edges ("crowdsourcing")

UNIVERSITÉ DE RECHERCHE

Decentralizing the Tactile Internet

[Cd] = [Cd2+] = 10nmgl

Smart Contracts Help establish/ maintain trusted HART membership

Crowdsourcing Nearby HOs help finalize physical tasks when *k* haptic feedback samples are misforecast

> **INRS** UNIVERSITÉ DE RECHERCHE

maier@ieee.org

